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Abstract

Large-eddy simulation results for laminar-to-turbulent transition in a spatially devel-
oping boundary layer are presented. The disturbances are ingested into a laminar 
ow
through an unsteady suction-and-blowing strip. The �ltered, three-dimensional time-
dependent Navier-Stokes equations are integrated numerically using spectral, high-order
�nite-di�erence, and three-stage low-storage Runge-Kutta methods. The bu�er-domain
technique is used for the out
ow boundary condition. The localized dynamic model
used to parameterize the subgrid-scale stresses begins to have a signi�cant impact at
the beginning of the nonlinear transition (or intermittency) region. The 
ow structures
commonly found in experiments are also observed in the present simulation; the com-
puted linear instability modes and secondary instability lambda-vortex structures are in
agreement with the experiments, and the streak-like-structures and turbulent statistics
compare with both the experiments and the theory. The physics captured in the present
LES are consistent with the experiments and the full Navier-Stokes simulation (DNS), at
a signi�cant fraction of the DNS cost. A comparison of the results obtained with several
SGS models shows that the localized model gives accurate results both in a statistical
sense and in terms of predicting the dynamics of the energy-carrying eddies, without ad
hoc adjustments.

1. Introduction

The problem of transition from laminar to turbulent 
ow in boundary layers is of great
practical interest. Transition studies are motivated by a need to understand this physical
process and to apply this knowledge to the prediction and control of transition. For example,
the low skin-friction drag of laminar boundary layer 
ow compared with turbulent 
ow is
very attractive to those who design high performance automobiles and aircrafts. On the
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other hand, there are many cases where the high mixing and heat-transfer rates of turbulent
boundary-layer are desirable, e.g., for combustion.

Theoretical and experimental work to date in transition studies was reviewed in the recent
paper by Kachanov (1994). It is well known today that natural transition due to the ampli-
�cation of small initial disturbances proceeds through a sequence of stages. The �rst stage is
the two-dimensional (2-D) development of slowly growing (on viscous time-scales) Tollmien-
Schlichting (TS) waves, which can be predicted accurately by the linear stability theory. The
rapid growth (on convective time-scales) of in�nitesimal three-dimensional disturbances on
the base of �nite-amplitude 2-D waves, which is explained by secondary instability theory,
constitutes the second stage, and is followed by the appearance of small-scale motion and the
�nal stages of transition. Herbert (1988) distinguished three types of secondary instability
modes: fundamental, subharmonic and detuned. The fundamental and subharmonic instabil-
ities lead respectively to aligned and staggered patterns of �-vortices observed in controlled
experiments of transition. The detuned type leads to a combination pattern in which the
�-vortices alternate between aligned and staggered patterns. If the initial disturbances are
strong enough (for free-stream turbulence levels above 0:5%, Roach and Brierley 1992; Voke
and Yang 1995), however, the transition will go into the nonlinear interaction stage directly,
and the linear instability stage is bypassed; the transition is then called bypass transition.
The present study focuses only on natural transition.

It is now readily accepted that the initial stages, including receptivity and the linear and
weakly nonlinear instability ampli�cation, can be predicted quite accurately for many recep-
tivity mechanisms or instabilities. What remains a signi�cant challenge even with today's
supercomputers is the understanding and ability to compute and predict accurately the non-
linear intermittency transition region. This ability is key for design because the maximum
skin friction and temperature peaks occur in this region. Also, this region entails the presence
of a great variety of scales to resolve. Hence, if a computational tool were available that could
capture the relevant physics of the 
ow with only a modest cost penalty, it would provide
the means to study the 
ow physics and validate proposed theories to model this complex
region.

Progress have also been made in the simulation capabilities of transition studies. Many
of the previous numerical simulations were summarized in the review paper by Kleiser and
Zang (1991). Although it is natural to simulate transition with a spatial approach, because
transition in boundary-layer 
ows evolves in the streamwise direction, the majority of numer-
ical simulations have involved computing the temporal growth of the instabilities. Spatial
simulations of transition have been limited mainly by the extreme computational resolution
requirements in the spatially-growing (streamwise) direction, and also by the problems associ-
ated with assigning the proper in
ow and out
ow boundary conditions. It has been observed
in experiments that the whole process of transition can require up to 25 wavelengths of the
primary TS waves. Furthermore, the late stages of transition involve length scales between
one and two orders of magnitude smaller than the TS scale. Thus, providing enough grid
points to resolve this phenomena in such a long region is a daunting prospect. By contrast,
in temporal simulations only one or two wavelengths need to be resolved, owing to the as-
sumption of streamwise periodicity, and the assumption of parallel mean 
ow is generally
made.

Among the researchers that carried out spatial simulations of transition by direct simula-
tions, Murdock (1986) simulated the K-type transition for the conditions of the Klebano� et
al. (1962) experiment, Fasel et al. (1990) simulated the early three-dimensional stages of both
fundamental and subharmonic transition. Recently, Bestek and coworkers (1994) calculated
the 2D boundary layer transition under strong adverse pressure gradient, and Lundbladh
et al. (1994) carried out the direct numerical simulation of bypass transition in both chan-
nel and 
at plate boundary layer 
ows. Joslin and Streett (1994) and Joslin (1995) have
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simulated linear and nonlinear stationary cross
ow vortex instability growth in swept wedge
boundary-layer 
ows. Finally, Joslin (1995) used a fully 3D (non-periodic) DNS approach to
simulate the evolution of instabilities in attachment-line 
ow.

Large-eddy simulation (LES) is an alternative approach for the numerical solution of
turbulent and transitional 
ow problems. Unlike the direct numerical simulation (DNS) in
which all scales of motion are resolved, in LES only the dynamically important (large) scales
are resolved, which results in signi�cant decrease of the CPU time required for a simulation.
The e�ect of the unresolved small scales on the large scales is modeled. Since the small
scales tend to be more homogeneous and isotropic, the modelling can be simpler and more
universal, compared with that in the Reynolds-averaged approach.

While the application of LES to turbulent 
ows dates back to the seventies, only recently
has this technique been used to the study of transitional 
ow. Piomelli et al. (1990), Piomelli
and Zang (1991) and Germano et al. (1991) computed the transition in temporally developing
boundary layer and plane channel 
ow. Their results indicate that, at the early stages of tran-
sition, the eddy viscosity must be inactive to allow the correct growth of the perturbations.
The dynamic model (Germano et al. 1991) achieves this result without the ad hoc corrections
required by other models. Voke and Yang (1995) performed large-eddy simulation of bypass
transition in a 
at plate boundary layer, using a low-Reynolds-number correction for the
Smagorinsky (1963) model; the properties of the simulated transition match those found ex-
perimentally. Recently, Ducros et al. (1996) have performed an LES calculation of transition
in a mildly compressible boundary layer using the Filtered Structure Function model. They
obtain results that follow the expected trends in the early part of the transition region, but
present no experimental or theoretical data to demonstrate quantitative agreement. In the
late stages of transition and in turbulence, their resolution is too coarse, and the results, in
the late breakdown stages and beyond, do not approach the expected turbulent laws.

Large-eddy simulation, by de�nition, is a technique in which not all scales of motion are
resolved. One question that may arise when applying it to transition problems regards the
capability of LES to predict the development of shear layers and vortices whose scale is close
the numerical �lter. A subgrid-scale (SGS) model suitable for LES applications should not
dissipate the energy of the low level perturbations during the initial stages of transition, but
should reproduce the energy transfer to the unresolved scales during the nonlinear stages
when such small, marginally resolved structures, are generated.

Previous work on the application of LES to transitional 
ows concentrated on the pre-
diction of statistical data (mean 
ow, Reynolds stresses, etc.) and only passing mention was
devoted to the e�ect of the SGS model on the development of the vortical structures. This
paper, on the other hand, will emphasize this issue, to illustrate how a localized eddy viscosity
model responds to the local characteristics of the 
ow in such a way as to predict accurately
the development of such structures, and compare this behavior with that of other models.
In this work, we intend to simulate accurately the entire transition process, including the
laminar, transitional and turbulent 
ow regimes.

The numerical method will be introduced �rst, followed by the simulation description;
the results will then be presented along with some comparisons with existing experimental
and numerical data; the issue of the prediction of the vortical structures, and the e�ect of the
eddy viscosity on the simulation will then be discussed. Finally, conclusions will be presented.
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2. Problem formulation

Mathematical formulation

The present technique for simulating transitional 
ow relies on the decomposition of
the instantaneous velocity ~ui(x; t) and pressure ~p(x; t) into base, Uoi(x) and Po(x), and
disturbance, ui(x; t) and p(x; t), components as

~ui(x; t) = Uoi(x) + ui(x; t) and ~p(x; t) = Po(x) + p(x; t); (1)

where x = (x; y; z) are the streamwise, wall-normal, and spanwise coordinates and t is time.
The base 
ow is the corresponding streamwise growing laminar 
ow �eld and is given by the
Blasius similarity solutions.

After substituting (1) into the Navier-Stokes equations and subtracting out the base-
ow
equations, the disturbance equations result and are given as

@ui

@t
+ uj

@ui

@xj
+ Uoj

@ui

@xj
+ uj

@Uoi

@xj
= �

@p

@xi
+

1

Re

@2ui

@xj@xj
; (2)

and
@ui

@xi
= 0; (3)

where the Reynolds number Re = U
1
��=�, U

1
is the freestream velocity and �� is the

boundary-layer displacement thickness at a reference streamwise location. The disturbance
velocity boundary conditions are ui(x; t) = 0 at y = 0 and y !1.

In LES, the large-scale (grid-resolved) components of the velocity and pressure are cal-
culated and the e�ects of the small, unresolved scales are modeled. By applying the �ltering
operation

f(x) =

Z
D
f(x')G(x;x')dx' (4)

(where G is the �lter function and D is the entire domain) to (2) and (3), the governing
equations for the large-scale velocity and pressure can be obtained:
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and
@ui

@xi
= 0; (6)

where �ij is the subgrid-scale (SGS) stress tensor given by �ij = uiuj � uiuj, which must be
modeled.

Here, �ij is modeled by a localized version (Piomelli and Liu, 1995) of the dynamic SGS
model (Germano et al. 1991). Local �ve point averaging in the streamwise and spanwise and
three point averaging in the wall-normal direction is used in calculating the model coe�cient.
The total viscosity (molecular + eddy viscosity) is also forced to be non-negative to ensure
numerical stability.

Numerical method

The �ltered Navier-Stokes equations are solved using the fractional time step method
(Chorin, 1968). Fourth-order �nite di�erence and fourth-order compact di�erence schemes
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Figure 1: Modulation functions for suction/blowing.

are used in the streamwise direction (x) for the pressure and the momentum equations,
respectively, Chebychev series are used in the wall-normal direction (y), and Fourier series in
the spanwise direction (z). Implicit Crank-Nicolson time-advancement is used for the wall-
normal di�usion terms and a three-stage Runge-Kutta scheme for the remaining terms. A
code validation study was previously performed by Joslin et al. (1992, 1993).

One of the major di�culties associated with the numerical simulation of spatially de-
veloping boundary-layer transition is to de�ne the out
ow boundary conditions. Here the
bu�er domain technique proposed by Streett and Macaraeg (1989) is used, in which the gov-
erning equations are gradually parabolized in a bu�er region that is appended to the end
of the computational domain, thus eliminating the necessity of applying out
ow boundary
conditions.

Test-case parameters

In the present simulation, the undisturbed laminar boundary layer is the base 
ow. Small
disturbances are introduced into the 
ow through a suction/blowing strip at an upstream
location. Since these disturbances are unstable, they are ampli�ed as they propagate down-
stream, and the 
ow goes through laminar, transition and turbulent stages consecutively.

At the suction/blowing strip, a non-zero normal velocity v is applied. Two frequences are
introduced into the 
ow by

v(x; z; t) = A1 f(x) sin(!t) +A1=2 f(x) g(z) sin

�
!

2
t+ �

�
(7)

where A1 and A1=2 are the disturbance amplitudes, � is the phase shift between these two
modes, and f(x), g(z) are the modulation functions shown in Fig. 1. The disturbance param-
eters are chosen to match the experiment of Kachanov and Levchenko (1984) for controlled
subharmonic breakdown and are given in Table 1.

To simulate transition in a spatially developing boundary layer, one must use a computa-
tional domain that is long enough in the streamwise direction so that laminar, transition and
turbulent stages can all be observed, and the grid resolution must be �ne enough to ensure
accuracy. Two computational boxes were used for the present simulation (see Fig. 2). The
�rst box covers the laminar region, the second one the transition and turbulent regions. In
the �rst box, a fairly coarse grid can be used. In the second box, however, the grid resolu-
tion has to be increased substantially to resolve the small scales present in the later stage
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fundamental mode subharmonic mode

frequency ! = 0:0916 !=2

streamwise wavenumber � = 0:245

streamwise wavelength �x = 25:6

spanwise wavenumber � = 0:249

spanwise wavelength �z = 25:3

maximum amplitude A1 = 10�3 A 1

2

= 10�5

phase shift � = 0

reference Re 740

in
ow Re 605

Table 1: Parameters for the simulation of subharmonic breakdown

Box I Box II

Lx = 487; Ly = 50; Lz = 25 Lx = 359; Ly = 100; Lz = 25

nx = 571; ny = 41; nz = 9 nx = 561; ny = 65; nz = 33

�x = 0:86; �y = 0:0085; �z = 3:2 �x = 0:64; �y = 0:006; �z = 0:79

�x+ = 21; �y+ = 0:2; �z+ = 26

Table 2: Dimensions of the computational boxes

of transition. In both boxes, the grid points are evenly distributed in both streamwise (x)
and spanwise (z) directions. In the wall-normal direction, the grid points are clustered in
the near wall region. The box sizes, the grid sizes and the number of grid points used in the
simulation are shown in Table 2, where �y is the �rst wall normal grid size, i.e., the distance
from the wall to the �rst grid point. This grid is �ner by a factor of two in each direction
than that used by Ducros et al. (1996).

A bu�er region with a streamwise length of 3�x is located at the end of each computational
box for the numerical out
ow boundary conditions. Numerical experiments indicate that this
length is su�cient to allow the results in the useful region to be una�ected by the bu�er region.
The total lengths of the two computational domains are 19�x and 14�x respectively. Both
boxes have the same spanwise length �z.

The suction/blowing strip is located 2�x downstream of the inlet and spans �x and �z
in the streamwise and spanwise directions respectively. At the in
ow of the �rst box, the
disturbance velocity components (u; v; w) are equal to zero. This is a valid assumption for
the in
ow boundary conditions because the suction/blowing strip is su�ciently far from the
in
ow. At the end of the �rst useful region (x = 16�x), the velocity data are saved every
time step for two periods of the fundamental wave, i.e., one period of the subharmonic wave.
This information is used for the in
ow boundary conditions for the second box. By using two
periods of in
ow data, no useful information is lost since waves with frequencies lower than
that of the subharmonic mode are still not present in the 
ow up to this location. Numerical
experiments indicate that, as long as the interface between the domains is located before
the strongly nonlinear region, no signi�cant disturbance is introduced by the interpolations
required by this procedure.
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Figure 2: Coordinate system and computational boxes.

3. Simulation results

In this section, the numerical results in the two useful regions of the computational boxes
will be presented. In the �rst box, weakly nonlinear growth of the disturbances is observed.
In the second box, the 
ow goes through laminar breakdown and the �nal transition to
turbulence. Numerical results will �rst be shown, along with some comparisons with exper-
imental and DNS data whenever possible, to validate the present results. The e�ects of the
eddy viscosity on the resolved structures, as well as the intermittency model, will then be
presented.

Linear and weakly nonlinear stages

In the �rst computational box, the fundamental wave initially grows before it reaches the
second branch of the neutral curve, and the subharmonic modes grow much faster due to the
secondary instability. Figure 3 shows the streamwise evolution of amplitude and phase of
several harmonics for the streamwise velocity u, compared with the experiment by Kachanov
and Levchenko (1984), where the Reynolds number is de�ned as Rex = xU

1
=� and x is the

distance from the leading edge of the plate. Good overall agreement is obtained between the
numerical simulation and the experiment. Towards the end of the computational domain, the
simulation tends to give higher amplitudes for all the frequency modes shown here. In the
experiment the fundamental mode (!) and its harmonics (2! and 3!) �rst saturate and then
decrease, whereas in the simulation, their amplitude never decreases even though saturation
can be seen. The same phenomena was observed in the direct numerical simulation of Fasel et
al. (1990), who attributed it to insu�cient resolution in the spanwise direction in their sim-
ulation, because only the �rst and second harmonic components in z were included in the
computation. However, in the present simulation the same trends are observed although the
leading terms of nonlinear interactions with high harmonic components are included. For the
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Figure 3: Streamwise evolution of amplitude (a) and phase (b) of selected harmonics at y=� =
0:26; z = 0 in the �rst computational box. Lines: LES; symbols: experiment (Kachanov and
Levchenko, 1984). � : !; , �: !=2; , 4 : 2!; , : 3!=2; , :
5!=2; , 5 3!.
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same test case, Joslin et al. (1993) resolved the instabilities and raised the inconsistency issue
between previous theoretical/computational comparisons and the Kachanov and Levchenko
(1984) experiments. Imposing a nonzero pressure gradient on a variation in the recorded fun-
damental frequency, they showed much better agreement in the computed and experimental
fundamental modes; however, the subharmonic modes were in worse agreement. Their results
suggest that there was insu�cient information about the initial spectrum in the experiments
to simulate adequately the same breakdown with computations. This could be due to the
fact that in the simulation only two frequency modes are introduced into the 
ow, and non-
linear wave interactions only occur between the fundamental mode, the subharmonic mode
and other harmonics generated by nonlinear wave interactions, whereas in the experiment a
broad spectrum of low-frequency modes, besides the subharmonic, was ampli�ed to a signif-
icant level from background noise, due to resonant interactions with the fundamental mode.
Because of the existence and ampli�cation of the low-frequency spectrum, wave interactions
would then be much more complicated in the experiment, and transition in the experiment
and in the LES may go through di�erent routes; this is supported by the observation that
the later stages of transition in the simulation feature high shear layer breakdown, whereas
the experiment featured fast spectrum �lling without spikes. It is also interesting to note
that the fundamental wave and its harmonics tail up at the end of the useful region, which
indicates the rapid joint growth of both fundamental and subharmonic waves at late stages
of subharmonic breakdown after crossing their ampli�cation curves, as was found in both
experimental and theoretical studies (Maslennikova and Zelman, 1985; Crouch and Herbert,
1993).

The comparison of the streamwise phase evolution (Fig. 3b) shows excellent agreement
between the simulation and the experimental data. All the modes have the same constant
downstream propagation velocity throughout the whole box. This wave synchronism condi-
tion, which should be satis�ed in order to have resonant wave interactions between all these
modes, was observed in the experiments of Corke and Mangano (1989) and Kachanov and
Levchenko (1984).

Wall-normal distributions of amplitude and phase of the fundamental and subharmonic
modes for the velocity u are shown in Fig. 4. The comparison with the experiment is also
good.

Nonlinear transition stage and turbulent region

In the second box, the disturbances grow further, all the frequency modes interact in a
more complex manner, and the 
ow goes through laminar breakdown and �nal transition
to turbulence. Fig. 5 shows the mean streamwise velocity in the wall-normal direction at
�ve equally spaced streamwise locations, with the �rst one at the beginning and the last one
at the end of the computational domain. The mean quantities shown in this section were
obtained by averaging over both the spanwise direction and time, using 60 instantenous 
ow
�elds spanning 3T in time (where T is the period of the fundamental wave) taken after a
steady state was reached. As the 
ow evolves in the streamwise direction, the mean velocity
changes from a laminar pro�le to a turbulent one. At the last location the velocity is in very
good agreement with the DNS data of Spalart (1988), although the friction velocity for the
LES is smaller than that for the DNS by 3%, due to the fact that the Reynolds number at
this location is Re�� = 1372, higher than that of the DNS, Re�� = 1000. Figure 6 gives the
rms of all three velocity components normalized by the friction velocity at the last streamwise
location. Good agreement with DNS is again achieved.

Figure 7 shows the streamwise variation of shape factor obtained from the large-eddy
simulation. The shape factor in the turbulent region is slightly lower than that of the DNS,
again due to Reynolds number di�erence.
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Figure 4: Wall-normal distribution of amplitude (a) and phase (b) of the fundamental and
subharmonic waves in the z = 0 plane, Rex = 3:6 � 105. Lines: LES; symbols: experiment
(Kachanov and Levchenko, 1984). , � : !; , � !=2.
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Figure 5: Mean streamwise velocity in wall units at various streamwise locations, +: DNS
(Spalart, 1988); : U+ = 2:44 ln y+ + 5:0; all other lines: LES.

Figure 6: Wall-normal distribution of velocity rms at the last streamwise location, Rex =
6:36 � 105. Lines: LES, symbols: DNS. + : urms; ;*: vrms; ; � : wrms.
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Figure 7: Streamwise variation of shape factor. : LES; : laminar 
ow; : DNS

The local skin friction given in Figure 8 has the laminar value as long as the amplitudes
of the disturbances are low, and begins to have a signi�cant increase as the 
ow goes into
laminar breakdown. The streamwise position where the skin friction begins to deviate from
the laminar curve can be de�ned as the transition location, which in current calculation is
Rex � 4:6 � 105. In the �nal stage of transition, the skin friction settles down to a level in
agreement with the DNS (Spalart, 1988) of turbulent boundary layer at the corresponding
Reynolds number Re�� . The turbulent skin friction, denoted by the chain-dot-dot-dot line,
is given by the equation (see White, 1991),

cf =
0:455

ln2(0:06Rex)
: (8)

with the virtual origin of the turbulent boundary layer moved from the leading edge towards
the transition location. The turbulence skin friction thus obtained matches very well the
result of LES.

SGS model performance

An important question for the simulation of transitional 
ows regards the capability of
the LES to resolve the large vortical structures that arise during the nonlinear interaction
stages of transition. In Fig. 9, the contours of the 
uctuating streamwise velocity are shown
in a horizontal plane located at y = 0:4 (y+ = 13 in the turbulent region) away from the
wall. The staggered �-vortices typical of the subharmonic breakdown can be �rst observed
at x = 640 in the �gure. They actually exist further upstream and by the time they are
apparent in the �gure, they have already become strong enough and gone into the later stage
of development. The �-vortices are followed immediately by the laminar breakdown. Near
the end of the computational box, the low speed streaks for the near-wall turbulent 
ow can
be observed.

Figure 10 shows a time-sequence of contours of the vertical shear @u0=@y in the z = 0
plane, where u0 is the 
uctuating velocity. A detached high shear layer �rst appears at
x = 640 in Fig. 10(a), which is also the location where the skin friction and the shape factor
start to depart from their laminar values; a kink develops on the shear layer at t = to+1:5T .
Low pressure contour plots from the present simulation indicate a strong correspondence
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Figure 8: Streamwise variation of local skin friction. : LES; : laminar 
ow
0:664Re�0:5; : turbulent 
ow 0:455= ln2(0:06Rex) with the virtual origin at Rex =
2:9� 105.

Figure 9: Contours of 
uctuating streamwise velocity u0 in the x�z planes y = 0:38 (y+ = 13)
at t = to + 1:5T , where to = 756. The contour levels are between �0:15 and 0:15.
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Figure 10: Time-sequence of vertical shear @u0=@y in a x� y plane (z = 0). (a) t = to + T ;
(b) t = to + 1:5T ; (c) t = to + 2T ; (d) t = to + 2:5T , where to = 756. The contour levels are
between -0.45 and 0.45.

between the kink in a shear layer and a vortex roll-up, as was also shown by Sandham and
Kleiser (1992) by analyzing a temporal DNS database of the K-type breakdown. This small
and energetic vortex can cause a spike in the velocity trace when it passes by the probe in
an experiment. Multiple shear layer roll-ups occur in the subsequent development, and the

ow �nally reaches laminar breakdown and turbulence. In the turbulent region, the near-wall
shear layers can be observed. It is worth pointing out that in the experiment of Kachanov
and Levchenko (1984) no high-frequency spikes were observed, the transition featured a fast
excitation of the broad spectrum of low-frequency 
uctuations, including the subharmonic,
followed by a �lling of spectrum by an interaction of low-frequency 
uctuations with the
fundamental wave and its harmonics.

In the present simulation, the �-vortices, the high shear layers and their roll-ups, and
the streak structures are all captured, even though the grid resolution is marginal during the
laminar breakdown, as indicated by the low level oscillations in the contours of Fig. 10. It
can be concluded that even with much coarser grid than in DNS, LES using the localized
dynamic model can predict transition accurately not only in terms of statistics, but even as
far as the local behavior is concerned.

One of the advantages of the dynamic model used in this calculation is its ability to adjust
the model coe�cient in time according to the 
ow conditions. By using the localized version
of the dynamic model, the spatial variation of the 
ow can also be included. In the �rst box
of the present simulation, the dynamic model gives essentially zero eddy viscosity because the
transition is still in its early stages; this results in the correct prediction of the spatial growth
of the disturbances. Figure 11 shows the wall-normal distribution of the mean eddy viscosity
at the �ve evenly spaced streamwise locations shown in Fig. 5. At the �rst two streamwise
locations, the eddy viscosity is essentially zero because the small scale disturbances are still
not measurable in the 
ow; it becomes signi�cant starting from the third location where
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Figure 11: Mean eddy viscosity distributions at various streamwise locations.

the laminar breakdown occurs; in the later stages of transition and in the turbulent stage it
reaches the same magnitude as the molecular viscosity within the boundary layer.

Figure 12 shows a time-sequence of contours of the SGS eddy viscosity in the z = 0
plane. Comparing this �gure with the corresponding Fig. 10 reveals again that the dynamic
model only turns on the eddy viscosity in the transition region and afterwards, where small
scales are present in the 
ow. Some negative values of eddy viscosity indicate backscatter
(energy transfer from small scales to large scales) in the transition and the turbulent regions.
Moreover, the �gure suggests that the eddy viscosity is very small in the �rst spike stage,
and becomes signi�cant only during and after the multi-spike stage. This is clearly shown
in Fig. 13 by the time-series of the disturbance velocity u and the SGS eddy viscosity �t at
four locations in the 
ow �eld, whose positions were marked by the bullets in Figure 12a.
In the laminar region where the disturbance is still small, the eddy viscosity given by the
localized dynamic model is essentially zero (Fig. 13a). The �rst spike stage is indicated by a
strong perturbation in the velocity trace at around t0+2:5T , but the eddy viscosity remains
small compared to the molecular one (Fig. 13b). In the multi-spike stage (Fig. 13c), the
eddy viscosity has signi�cant values at the time when multiple spikes appear in the velocity
trace, because of the emergence of small scales; it, however, remains small before and after
the spikes. Figure 13d shows the chaotic variation of the velocity and the eddy viscosity in
the turbulent region.

It has been shown that the localized SGS model used in the present study has the ability
to adjust itself locally both in space and time according to the characteristics of the 
ow
�eld. This is essential to the large-eddy simulation of transitional 
ows, since intermittency
is a dominant phenomenon during transition. A SGS model that lacked this capability could
result in over-damping of the disturbances and incorrect prediction of the transition process,
as does the original Smagorinsky model. In addition, the eddy viscosity given by the localized
model is zero in the �rst spike stage, and only multiple spikes can give rise to non-zero values
of eddy viscosity. In a direct numerical simulation of transition, the grid resolution has to be
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Figure 12: Time-sequence of the eddy viscosity in the (z = 0) plane. (a) t = to + T ; (b)
t = to + 1:5T ; (c) t = to + 2T ; (d) t = to + 2:5T . The contour levels are between -1 and 3.

increased before the multiple spike stage, since the e�ect of the small scale disturbances on
the large ones then becomes signi�cant and cannot be neglected.

Also shown in Fig. 13 are the eddy viscosities obtained from simulations using the
Smagorinsky model with the intermittency modi�cation (Piomelli et al. 1990)

�T =

�
Hl �H

Hl �Ht

�2
(�cs)

2
q
2sijsij (9)

where H is the shape factor, and the low-Reynolds-number model (Voke, 1995)

�T = �s � (�=�)[1 � exp(���s=�)]; (10)

where �s is given by the original Smagorinsky model, cs is chosen as 0:1, and � = 4:5.
According to Voke (1996), only the 
uctuating strain rate sij, rather than the total strain,
should be used to compute �s. The van Driest wall damping function is used for both models.
The calculations start from the same 
ow �eld of LES at t = to. It can be observed clearly
that the eddy viscosity given by the low-Reynolds-number model is also insigni�cant in the
laminar region, whereas in the �rst spike stage, the model gives much higher eddy viscosity;
its variation closely resembles that of the vertical shear, re
ecting the fact that @u=@y is the
dominant term in the strain-rate tensor; the spike is thus weakened. The higher viscosity
of the low-Reynolds-number model also results in the smearing out of the multiple spikes in
Fig. 13c. On the other hand, the Smagorinsky model with the intermittency modi�cation
gives results in agreement with the dynamic model well into the one-spike stage; it, however,
gives smaller eddy viscosity in the multi-spike stage due to the intermittency attenuation.
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Figure 13: Time history of the disturbance velocity u, the vertical shear @u=@y and the eddy
viscosity �t at y = 3:0; z = 0 and (a) x = 629; (b) x = 655; (c) x = 680; (d) x = 834. The
eddy viscosities are given by: : localized dynamic model; : low-Reynolds-number
Smagorinsky model; : Smagorinsky model with the intermittency modi�cation.
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Figure 14: Time-sequence of vertical shear @u0=@y in a x�y plane (z = 0) and at t = to+2T .
(a) Localized dynamic model; (b) low-Reynolds-number Smagorinsky model; (c) Smagorinsky
model with the intermittency modi�cation. The contour levels are between -0.45 and 0.45.

Figure 15: Streamwise variation of skin friction. : Localized dynamic model; :
low-Reynolds number Smagorinsky model; : Smagorinsky model with the intermittency
modi�cation.
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In the turbulent region, both models predict positive eddy viscosity and its peak values are
smaller.

Figure 14 compares the contours of @u0=@y for di�erent SGS models. The shear layer
roll-up at x = 680 in the low-Reynolds-number model simulation is clearly not as strong as
in other two cases, due to excessive damping provided by the eddy viscosity in the �rst spike
stage; this also causes the transition to occur somewhat later and the increase in cf to be
less steep, as shown in Fig. 15. The modi�ed Smagorinsky model gives higher skin friction
in the laminar breakdown region because of the attenuation of the SGS eddy viscosity by
intermittency. The scattering of the data points in the turbulent region on Fig. 15 is due
to insu�cient averaging. The comparisons here between three models tends to indicate that
the localized dynamic model does a better job, because the higher shear layer it resolves is
sharper and the mean velocity pro�le it gives compares with DNS better than those of the
other two. Furthermore, the localized dynamic model has no adjustable constant or ad hoc
parameter. However, this issue need to be further investigated, a comparison with DNS is
desired.

4. Conclusions

Large-eddy simulation of subharmonic type transition in a 
at plate boundary layer was
carried out. It was observed that the simulation predicts accurately the development of distur-
bances in the early stages, the shear layers and vortical structures in the laminar breakdown
stage, and the turbulent statistics in the turbulent stage. In addition, it has been shown that
the skin friction for the simulation during laminar breakdown falls below the value of natu-
ral transition. The localized dynamic SGS model has the desired capability to adjust itself
locally both in space and time according to the characteristics of the 
ow �eld. It yields very
small eddy viscosity in the laminar as well as the one spike stage, but gives signi�cant values
in the multi-spike and the turbulent stages, due to the emergence of energy in small scales
of motion. The study also shows that the intermittency SGS model resembles the behavior
of the localized dynamic model closely in the �rst-spike stage of transition, however, it gives
smaller eddy viscosity in the multiple-spike stage; the low-Reynolds-number model predicts
large values of eddy viscosity even in the �rst-spike stage.
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